Copied to
clipboard

G = C42.252C23order 128 = 27

113rd non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.252C23, C4⋊C4.74D4, C82C819C2, C86D427C2, (C2×D4).65D4, C4⋊D8.9C2, (C2×C8).190D4, C4.4D833C2, C4.D819C2, C4⋊Q8.73C22, D4.D436C2, C4.107(C4○D8), C4.10D817C2, C2.10(C82D4), C4⋊C8.191C22, C4.73(C8⋊C22), (C4×C8).285C22, (C4×D4).51C22, C41D4.38C22, C2.14(D4.2D4), C2.20(D4.3D4), C22.213(C4⋊D4), (C2×C4).37(C4○D4), (C2×C4).1287(C2×D4), SmallGroup(128,433)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C42.252C23
C1C2C22C2×C4C42C4×D4C86D4 — C42.252C23
C1C22C42 — C42.252C23
C1C22C42 — C42.252C23
C1C22C22C42 — C42.252C23

Generators and relations for C42.252C23
 G = < a,b,c,d,e | a4=b4=c2=e2=1, d2=a-1b2, ab=ba, cac=a-1, ad=da, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=a-1c, ece=bc, ede=a2d >

Subgroups: 240 in 88 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C4×C8, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4×D4, C41D4, C4⋊Q8, C2×M4(2), C2×D8, C2×SD16, C4.D8, C4.10D8, C82C8, C86D4, C4⋊D8, D4.D4, C4.4D8, C42.252C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C4⋊D4, C4○D8, C8⋊C22, D4.2D4, C82D4, D4.3D4, C42.252C23

Character table of C42.252C23

 class 12A2B2C2D2E4A4B4C4D4E4F4G8A8B8C8D8E8F8G8H8I8J
 size 1111816222248164444888888
ρ111111111111111111111111    trivial
ρ21111-1111111-111111-1-1-1-1-1-1    linear of order 2
ρ311111-11111111-1-1-1-11-11-1-1-1    linear of order 2
ρ41111-1-111111-11-1-1-1-1-11-1111    linear of order 2
ρ511111-1111111-11111-1-1-1-111    linear of order 2
ρ61111-1-111111-1-111111111-1-1    linear of order 2
ρ7111111111111-1-1-1-1-1-11-11-1-1    linear of order 2
ρ81111-1111111-1-1-1-1-1-11-11-111    linear of order 2
ρ92222002-22-2-2002-2-22000000    orthogonal lifted from D4
ρ102222002-22-2-200-222-2000000    orthogonal lifted from D4
ρ11222220-22-22-2-200000000000    orthogonal lifted from D4
ρ122222-20-22-22-2200000000000    orthogonal lifted from D4
ρ13222200-2-2-2-220000000000-2i2i    complex lifted from C4○D4
ρ14222200-2-2-2-2200000000002i-2i    complex lifted from C4○D4
ρ152-2-2200-202000002i-2i0-22--2-200    complex lifted from C4○D8
ρ162-2-2200-20200000-2i2i0--22-2-200    complex lifted from C4○D8
ρ172-2-2200-202000002i-2i0--2-2-2200    complex lifted from C4○D8
ρ182-2-2200-20200000-2i2i0-2-2--2200    complex lifted from C4○D8
ρ194-4-440040-400000000000000    orthogonal lifted from C8⋊C22
ρ204-44-400040-40000000000000    orthogonal lifted from C8⋊C22
ρ214-44-4000-4040000000000000    orthogonal lifted from C8⋊C22
ρ2244-4-40000000002-200-2-2000000    complex lifted from D4.3D4
ρ2344-4-4000000000-2-2002-2000000    complex lifted from D4.3D4

Smallest permutation representation of C42.252C23
On 64 points
Generators in S64
(1 50 5 54)(2 51 6 55)(3 52 7 56)(4 53 8 49)(9 45 13 41)(10 46 14 42)(11 47 15 43)(12 48 16 44)(17 29 21 25)(18 30 22 26)(19 31 23 27)(20 32 24 28)(33 62 37 58)(34 63 38 59)(35 64 39 60)(36 57 40 61)
(1 61 52 38)(2 62 53 39)(3 63 54 40)(4 64 55 33)(5 57 56 34)(6 58 49 35)(7 59 50 36)(8 60 51 37)(9 21 47 27)(10 22 48 28)(11 23 41 29)(12 24 42 30)(13 17 43 31)(14 18 44 32)(15 19 45 25)(16 20 46 26)
(2 51)(3 7)(4 49)(6 55)(8 53)(9 31)(10 24)(11 29)(12 22)(13 27)(14 20)(15 25)(16 18)(17 47)(19 45)(21 43)(23 41)(26 44)(28 42)(30 48)(32 46)(33 35)(34 57)(36 63)(37 39)(38 61)(40 59)(50 54)(58 64)(60 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 19)(2 24)(3 21)(4 18)(5 23)(6 20)(7 17)(8 22)(9 63)(10 60)(11 57)(12 62)(13 59)(14 64)(15 61)(16 58)(25 52)(26 49)(27 54)(28 51)(29 56)(30 53)(31 50)(32 55)(33 44)(34 41)(35 46)(36 43)(37 48)(38 45)(39 42)(40 47)

G:=sub<Sym(64)| (1,50,5,54)(2,51,6,55)(3,52,7,56)(4,53,8,49)(9,45,13,41)(10,46,14,42)(11,47,15,43)(12,48,16,44)(17,29,21,25)(18,30,22,26)(19,31,23,27)(20,32,24,28)(33,62,37,58)(34,63,38,59)(35,64,39,60)(36,57,40,61), (1,61,52,38)(2,62,53,39)(3,63,54,40)(4,64,55,33)(5,57,56,34)(6,58,49,35)(7,59,50,36)(8,60,51,37)(9,21,47,27)(10,22,48,28)(11,23,41,29)(12,24,42,30)(13,17,43,31)(14,18,44,32)(15,19,45,25)(16,20,46,26), (2,51)(3,7)(4,49)(6,55)(8,53)(9,31)(10,24)(11,29)(12,22)(13,27)(14,20)(15,25)(16,18)(17,47)(19,45)(21,43)(23,41)(26,44)(28,42)(30,48)(32,46)(33,35)(34,57)(36,63)(37,39)(38,61)(40,59)(50,54)(58,64)(60,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19)(2,24)(3,21)(4,18)(5,23)(6,20)(7,17)(8,22)(9,63)(10,60)(11,57)(12,62)(13,59)(14,64)(15,61)(16,58)(25,52)(26,49)(27,54)(28,51)(29,56)(30,53)(31,50)(32,55)(33,44)(34,41)(35,46)(36,43)(37,48)(38,45)(39,42)(40,47)>;

G:=Group( (1,50,5,54)(2,51,6,55)(3,52,7,56)(4,53,8,49)(9,45,13,41)(10,46,14,42)(11,47,15,43)(12,48,16,44)(17,29,21,25)(18,30,22,26)(19,31,23,27)(20,32,24,28)(33,62,37,58)(34,63,38,59)(35,64,39,60)(36,57,40,61), (1,61,52,38)(2,62,53,39)(3,63,54,40)(4,64,55,33)(5,57,56,34)(6,58,49,35)(7,59,50,36)(8,60,51,37)(9,21,47,27)(10,22,48,28)(11,23,41,29)(12,24,42,30)(13,17,43,31)(14,18,44,32)(15,19,45,25)(16,20,46,26), (2,51)(3,7)(4,49)(6,55)(8,53)(9,31)(10,24)(11,29)(12,22)(13,27)(14,20)(15,25)(16,18)(17,47)(19,45)(21,43)(23,41)(26,44)(28,42)(30,48)(32,46)(33,35)(34,57)(36,63)(37,39)(38,61)(40,59)(50,54)(58,64)(60,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19)(2,24)(3,21)(4,18)(5,23)(6,20)(7,17)(8,22)(9,63)(10,60)(11,57)(12,62)(13,59)(14,64)(15,61)(16,58)(25,52)(26,49)(27,54)(28,51)(29,56)(30,53)(31,50)(32,55)(33,44)(34,41)(35,46)(36,43)(37,48)(38,45)(39,42)(40,47) );

G=PermutationGroup([[(1,50,5,54),(2,51,6,55),(3,52,7,56),(4,53,8,49),(9,45,13,41),(10,46,14,42),(11,47,15,43),(12,48,16,44),(17,29,21,25),(18,30,22,26),(19,31,23,27),(20,32,24,28),(33,62,37,58),(34,63,38,59),(35,64,39,60),(36,57,40,61)], [(1,61,52,38),(2,62,53,39),(3,63,54,40),(4,64,55,33),(5,57,56,34),(6,58,49,35),(7,59,50,36),(8,60,51,37),(9,21,47,27),(10,22,48,28),(11,23,41,29),(12,24,42,30),(13,17,43,31),(14,18,44,32),(15,19,45,25),(16,20,46,26)], [(2,51),(3,7),(4,49),(6,55),(8,53),(9,31),(10,24),(11,29),(12,22),(13,27),(14,20),(15,25),(16,18),(17,47),(19,45),(21,43),(23,41),(26,44),(28,42),(30,48),(32,46),(33,35),(34,57),(36,63),(37,39),(38,61),(40,59),(50,54),(58,64),(60,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,19),(2,24),(3,21),(4,18),(5,23),(6,20),(7,17),(8,22),(9,63),(10,60),(11,57),(12,62),(13,59),(14,64),(15,61),(16,58),(25,52),(26,49),(27,54),(28,51),(29,56),(30,53),(31,50),(32,55),(33,44),(34,41),(35,46),(36,43),(37,48),(38,45),(39,42),(40,47)]])

Matrix representation of C42.252C23 in GL6(𝔽17)

100000
010000
0001150
0010015
0010016
0001160
,
010000
1600000
000100
0016000
0016001
0001160
,
100000
0160000
001000
0001600
0000160
000001
,
1300000
0130000
005507
001212100
0012055
00051212
,
330000
3140000
00106413
0010111313
0001166
00100107

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,1,0,0,15,0,0,16,0,0,0,15,16,0],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,16,0,0,0,1,0,0,1,0,0,0,0,0,16,0,0,0,0,1,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,5,12,12,0,0,0,5,12,0,5,0,0,0,10,5,12,0,0,7,0,5,12],[3,3,0,0,0,0,3,14,0,0,0,0,0,0,10,10,0,10,0,0,6,11,11,0,0,0,4,13,6,10,0,0,13,13,6,7] >;

C42.252C23 in GAP, Magma, Sage, TeX

C_4^2._{252}C_2^3
% in TeX

G:=Group("C4^2.252C2^3");
// GroupNames label

G:=SmallGroup(128,433);
// by ID

G=gap.SmallGroup(128,433);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,736,422,387,1123,136,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^2=e^2=1,d^2=a^-1*b^2,a*b=b*a,c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=a^-1*c,e*c*e=b*c,e*d*e=a^2*d>;
// generators/relations

Export

Character table of C42.252C23 in TeX

׿
×
𝔽